A new metric on the manifold of kernel matrices with application to matrix geometric means

نویسنده

  • Suvrit Sra
چکیده

Symmetric positive definite (spd) matrices pervade numerous scientific disciplines, including machine learning and optimization. We consider the key task of measuring distances between two spd matrices; a task that is often nontrivial whenever the distance function must respect the non-Euclidean geometry of spd matrices. Typical non-Euclidean distance measures such as the Riemannian metric δR(X,Y ) = ‖log(Y −1/2XY )‖F, are computationally demanding and also complicated to use. To allay some of these difficulties, we introduce a new metric on spd matrices, which not only respects non-Euclidean geometry but also offers faster computation than δR while being less complicated to use. We support our claims theoretically by listing a set of theorems that relate our metric to δR(X,Y ), and experimentally by studying the nonconvex problem of computing matrix geometric means based on squared distances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new metric on the manifold of kernel matrices

Symmetric positive definite (spd) matrices pervade numerous scientific disciplines, including machine learning and optimization. We consider the key task of measuring distances between two spd matrices; a task that is often nontrivial whenever the distance function must respect the non-Euclidean geometry of spd matrices. Typical non-Euclidean distance measures such as the Riemannian metric δR(X...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Riemannian metrics on positive de nite matrices related to means

The Riemannian metric on the manifold of positive de nite matrices is de ned by a kernel function in the form K D(H;K) = P i;j ( i; j) 1TrPiHPjK when P i iPi is the spectral decomposition of the foot point D and the Hermitian matrices H;K are tangent vectors. For such kernel metrics the tangent space has an orthogonal decomposition. The pull-back of a kernel metric under a mapping D 7! G(D) is ...

متن کامل

N ov 2 00 8 Riemannian metrics on positive definite matrices related to means

The Riemannian metric on the manifold of positive definite matrices is defined by a kernel function φ in the form K D(H,K) = ∑ i,j φ(λi, λj) −1TrPiHPjK when ∑ i λiPi is the spectral decomposition of the foot point D and the Hermitian matrices H,K are tangent vectors. For such kernel metrics the tangent space has an orthogonal decomposition. The pull-back of a kernel metric under a mapping D 7→ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012